Abstract

Direct sustainable conversion of hydrogen sulfide (H2S) enables collaborative recovery of H and S resources via a metal-enhanced microwave plasma strategy, avoiding the hydrogen waste in the traditional Claus process. However, the metal size effect on microwave plasma property, the optimal process parameters, and the enhancement mechanism remain unclear in H2S conversion. Herein, the optimal tungsten needle (diameter: 1 mm, length: 60 mm, and tip angle: 10°) is experimentally proven for intensifying microwave discharge in multi-mode cavities. Theoretical calculations and plasma distribution reveal that the optimized tungsten needle achieves the ideal coupling with the microwave field, exhibiting extreme electric field augmentation around the needle tip. Tungsten-needle intensifies microwave-sustained plasma, realizing 40.2 % (90.1 %) conversion of 100 % (10 %) concentration H2S to H2 at a low microwave power of 300 W with a good stability of 30 hrs. Low power, large flow rate, and high H2S concentration are beneficial for improving energy efficiency. The excitation of microwave plasma is accompanied by a massive generation of highly energetic electrons. The direct high-energy electron-H2S collision contributes a lot to H2S splitting, especially for high-concentration H2S. In-situ optical emission spectroscopy confirms the vital S and H radicals in the plasma. The free radical reactions triggered by electron collisions are responsible for the production of H2 and S. This work opens an avenue to sustainable and low-carbon hydrogen production from the direct conversion and utilization of H2S.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.