Abstract
AbstractThe evolution of Earth's major geochemical reservoirs over ~4.5 × 109 years remains a matter of intense study. Geochemical tools in the form of short‐lived radionuclide isotope ratios (142Nd/144Nd and 182W/184W) have expanded our understanding of the geochemical variability in both the modern and ancient Earth. Here, we present 142Nd/144Nd and 182W/184W data from a suite of rocks from the Slave craton that formed over a 1.1 × 109 year time span in the Archean. The rocks have consistently high 182W/184W, yet 142Nd/144Nd that is lower than bulk mantle and increased over time. The declining variability in 142Nd/144Nd with time likely reflects the homogenization of compositional heterogeneities in the silicate Earth that were initially created by differentiation events that occurred prior to 4.2 Ga. The elevated 182W/184W recorded in the Slave samples help refine models for the broader W‐isotope evolution of the silicate Earth. Globally, the Archean mantle that formed continental crust was dominated by 182W/184W elevated by some 10–15 ppm compared to the value for the modern upper mantle. The Slave craton lacks significant volumes of komatiite yet has elevated 182W/184W until 2.9 Ga. This observation, combined with the presence of other komatiite suites that have low 182W/184W, suggests that deep‐seated sources contributed low 182W/184W in the Archean Earth. The regional variability in 182W/184W may be explained by invoking chemical and/or isotopic exchange between a well‐mixed silicate Earth and the core or a portion of the lower mantle whose W‐isotope composition has been influenced by interaction with the core.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.