Abstract
The effect of the magnetised sheath on the gross erosion and redeposition of tungsten is examined with an insight on impurity impact energy and angle. A complete treatment of the impact energy is performed leading to a scaling that differs from the usual formula. It is found that even if the energy distribution at the sheath entrance strongly differs from this approximation, the discrepancy remains under 20% for the impact energy. The average impact angle of a set of impurities is calculated. The difference between models with and without sheath electric field depends strongly on the charge state and mass of the impurity considered. This can lead, for example in the case of gross sputtering due to impinging , to an underestimation of 3–4 times at for very grazing angles. Scalings for high and low density cases, which correspond for fusion relevant magnetic fields () to m−3 and m−3, respectively, are deduced and provide a good estimation of the average impact angle of all impurities. Finally the magnetised sheath is shown to have an effect on the redeposition through two contributions: it increases the prompt redeposition contribution to the total redeposition and constitutes a potential barrier for the ions leaving the surface. A discussion is provided about the optimal width of the simulation domain to capture these effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.