Abstract

In this study, polyvinyl pyrrolidone modified tungsten disulfide (WS2-PVP) nanoflower was synthesized using a simple and effective one-pot method. Owing to the surface polyvinyl pyrrolidone (PVP) modification, WS2-PVP nanoflowers showed excellent colloidal stability in different circumstances, which can be well dispersed in water, saline, and cell culture medium. Meanwhile, the WS2-PVP nanoflowers have a good biocompatibility both in vitro and in vivo. Further studies confirmed that the WS2-PVP nanoflowers have the ability of simulating catalase, superoxide dismutase and glutathione peroxidase enzymes and scavenging reactive oxygen species (ROS). Therefore, WS2-PVP nanoflowers were used to treat reactive oxygen species-related diseases, which showed the cell protection effect and significantly improved the treatment results of acute liver injury on mice. We hope that our findings will facilitate the development of nanomaterials with multiple enzymatic mimicking properties and further clinical application of tungsten-based ROS scavengers in biomedical therapy and research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call