Abstract

Tungsten (W) and various composites are being considered as the primary plasma-facing materials for fusion reactors. Like all engineering materials, they contain certain levels of impurities, which can have an important impact on mechanical properties. In the present work, oxygen was identified as a major impurity in our starting tungsten powder. At elevated temperatures, the presence of interstitial elements such as oxygen leads to the formation of an oxide-rich tungsten phase at the tungsten grain boundaries. In this study, we determined the capacity of tungsten carbide (WC) nanoparticles to remove the oxide impurities from a tungsten body. Tungsten composites with 0.05, 0.25 and 0.51 wt. % carbon (C) in the form of WC were sintered using a field-assisted sintering technique (FAST) at 1900 °C for 5 min. The sintered samples were characterized using field-emission scanning and transmission electron microscopy. Thermodynamic and kinetic considerations allowed us to determine the optimum theoretical amount of WC to prevent the in-situ formation of WO2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call