Abstract

Hybrid nanostructures with switchable and reversible "blue-red-green" emission were efficiently synthesized. These nanostructures comprise polyhedral oligomeric silsesquioxanes (POSS) that behave as a nanocage that can be functionalized with terpyridine-based organic ligands, which can be easily complexed with europium (III) ions. The complexes were characterized by UV-Vis and fluorescence spectroscopy and their stoichiometry was also confirmed by 1 H NMR spectroscopy. In the presence of the Eu(III) ions, the octafunctionalized nanocages self-assemble to form 3D architectures that display an intense red-emission, especially in the solid state. The presence of an alkenyl group bridging the inorganic core to the organic moiety was employed to tune the emission properties by trans-cis isomerization of the double bond. In the case of the octafunctionalized nanocages (O-POSS), this isomerization was monitored in the presence of Eu(III) cations and was accompanied by an evident colour change from blue (trans-O-POSS) to red (Eu@trans-O-POSS) and finally to green (cis-O-POSS) as consequence of the release of the metal cations. This behaviour, together with the easy dispersion of the dry powder and the possibility of coating as a film in presence of small amounts of solvent, makes the emissive solid promising for applications in materials science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.