Abstract

We realized a UV laser spectrometer at 253.7 nm for Doppler broadening thermometry on the 1S0-3P1 intercombination line in mercury vapors. Our setup is based on the two-stage duplication of a 1014.8 nm diode laser in a fiber-coupled periodically poled lithium niobate waveguide crystal and a beta-barium borate crystal in enhancement cavity, and we exploit injection locking of a 507.4 nm diode laser to boost the available optical power after the first duplication. Our setup addresses spectroscopic features that allow the thermodynamic temperature determination of the atomic sample from the absorption profile with 10-6 accuracy. The realized UV laser source has 1×10-4 relative intensity stability, Gaussian shape, and over 10 GHz mode-hop-free tunable range. These features are crucial for the practical realization of the kelvin in the new International System of Units through a spectroscopic technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.