Abstract

Abstract Up-conversion single-photon detectors (UCSPD) are based on sum-frequency generation of the telecom band single-photons to near-infrared wavelengths at which efficient and low-noise silicon single-photon detectors are available. Moreover, because of high dynamic range of silicon single-photon detectors, UCSPD is suitable for high-speed quantum communication. UCSPDs reported to date, however, have a very narrow fixed window of detectable wavelengths, severely limiting their applications in wavelength-multiplexed quantum networks. In this work, we report a tunable UCSPD module that covers the complete telecom C band, making it suitable for quantum communication networks based on sharing wavelength-multiplexed entangled photons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call