Abstract

Tunable triple-peaks with the transmission intensity of more than 90% plasmonically induced transparency metamaterial resonator based on nested double π-shaped metallic structure is proposed at the terahertz frequency region, which is consisted of three sets of gold nanorods with different sizes placed on a dielectric substrate of SiO2. The coupling effect of localized electric field between different parts of the proposed structure can be used to explain the physical mechanism of three transparent windows. The finite-difference time-domain (FDTD) is used to study the spectral properties of the proposed structure, and the influence of the size of the nanorods and the relative distance between them on the spectral characteristics are also discussed. It can be seen that some obvious shift phenomena occur in the spectra with the change of these nanorods. These results indicate that the proposed structure opens up new avenues in many related applications, especially for multi-channel filters, optical switches, and sensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.