Abstract

The late-time dynamics of quantum many-body systems is organized in distinct dynamical universality classes, characterized by their conservation laws and thus by their emergent hydrodynamic transport. Here, we study transport in the one-dimensional Hubbard model with different masses of the two fermionic species. To this end, we develop a quantum Boltzmann approach valid in the limit of weak interactions. We explore the crossover from ballistic to diffusive transport, whose timescale strongly depends on the mass ratio of the two species. For timescales accessible with matrix product operators, we find excellent agreement between these numerically exact results and the quantum Boltzmann equation, even for intermediate interactions. We investigate two scenarios which have been recently studied with ultracold atom experiments. First, in the presence of a tilt, the quantum Boltzmann equation predicts that transport is significantly slowed down and becomes subdiffusive, consistent with previous studies. Second, we study transport probed by displacing a harmonic confinement potential and find good quantitative agreement with recent experimental data [N. Darkwah Oppong et al., arXiv:2011.12411]. Our results demonstrate that the quantum Boltzmann equation is a useful tool to study complex non-equilibrium states in inhomogeneous potentials, as often probed with synthetic quantum systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.