Abstract

Janus transition metal dichalcogenides, with intrinsic mirror asymmetry, exhibit a wide array of interesting properties. In this work, we study Janus monolayers derived from WTe2 using first-principles and tight-binding calculations. We discover that WSeTe and WSTe are topologically trivial, in contrast to the parent quantum spin Hall insulator WTe2. Motivated by the growing interest in non-linear Hall effect, which also requires asymmetric structures, we investigate the Berry curvature and its dipole in these Janus systems and find that they exhibit strikingly large values of Berry curvature dipole, despite being in the topologically trivial phase. We track down the origin of this behaviour and put forth a low-energy massive Dirac model to understand the central features of our ab inito computations. Our predictions introduce Janus monolayers as promising new platforms for exploring as well as engineering non-linear Hall effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.