Abstract

Ubiquitous thermal conduction makes its force effect particularly important in diverse fields, such as electronic engineering and biochemistry. However, regulating thermal conduction force is still challenging due to two stringent restrictions. First, a temperature gradient is essential for inducing the force effect. Second, the force direction is fixed to the temperature gradient in a specific material. Here, we demonstrate that thermal conduction force can exist unexpectedly at a zero average temperature gradient in dielectric crystals. The wavelike feature of thermal conduction is considered, i.e., the second sound mode. Based on the momentum conservation law for phonon gases, we analyze thermal conduction force with the plane, zeroth-order Bessel, and first-order Bessel second sounds. Remarkably, the force direction is highly tunable to be along or against the second sound direction. These results provide valuable insights into thermal conduction force in those environments with temperature fluctuations, and they open up possibilities for practical applications in manipulating the local thermal conductivity of crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.