Abstract

A tunable spatio-temporal Talbot imaging phenomenon is presented. This phenomenon is based on the radiation properties of an array of beam-steered metamaterial composite right-/left-handed leaky-wave antennas, which is excited by a modulated pulse. The scanning law property of these antennas is exploited to achieve off-axis radiation, which leads to a tunable Talbot distance, as a function of the input pulse modulation frequency. The proposed Talbot phenomenon is analyzed theoretically, taking into account the aberrations produced by higher-order terms present in the free-space transfer function. Numerical simulations confirm the self-imaging and pulse multiplication effects and their tunability capabilities as a function of frequency. Finally, the experimental results are included to confirm the phenomenon predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call