Abstract

Two dimensional films and paper-like structures (60–170 μm thick) have been facilely fabricated by casting ethanolic dispersions of amphiphilic and amphoteric protein microfibrils (ca. 1.3 μm width; 53 μm length) under controlled temperatures and moisture levels. Surface hydrophilicity or hydrophobicity can be easily tuned by the abillity of the highly responsive microfibers to self-organize at the interface to mimic the hydrophilicity or hydrophobicity of cast substrates. For instance, surfaces cast on hydrophobic polystyrene or Teflon were moderately hydrophobic with water contact angles (WCAs) of 54°–71° while those on hydrophilic glass or exposed to air were hydrophilic (WCAs: 5°–10°). Thin film dried in the presence of moisture (60% RH) at 65 °C had the highest crystallinity (CrI: 56%) and β structure (64%), including 48% β-sheet form, and exhibited moisture-responsive Tg, pH-responsive planar swelling, and excellent wet resiliency in extremely acidic (pH = 0) to basic (pH = 10) conditions. The pH-dependent release of highly water-soluble cationic methylene blue bound to protein microfibril (SPMF) films attests to their amphoterism and demonstrates the applicability of such 2D structures for pH-dependent controlled release of other cationic and anionic species. Such versatility of amphiphilic and amphoteric protein microfibrils can be engineered into 2D structures with tunable surface hydrophilicity and hydrophobicity, moisture- and pH-responsive behaviors and controlled release capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.