Abstract

By means of high-resolution electron energy loss spectroscopy, we investigate the low-energy excitation spectrum of transition-metal monopnictides hosting Weyl fermions. We observe gapped plasmonic modes in (001)-oriented surfaces of single crystals of NbAs and TaAs at 66 and 68 meV, respectively. Our findings are consistent with theory and we estimate an effective Coulomb interaction strength $\alpha_{\rm eff}\approx0.41$ for both samples. We also demonstrate that the modification of the surface of transition-metal monopnictides by the adsorption of chemical species (in our case, oxygen and hydrocarbon fragments) changes the frequency of the plasmonic excitations, with a subsequent modification of the effective interaction strength in the 0.30-0.48 range. The remarkable dependence of plasmonic features on the presence of adsorbates paves the way for plasmonic sensors based on Weyl semimetals operating in the mid-infrared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call