Abstract

In this work, the impacts of varying surface modification, matrix parameters, and fabrication conditions on the performance of optically printed (0-3) piezoelectric polymer nanocomposites are examined. For example, we find that a 75% reduction in nanoparticle edge-length boosted the piezoelectric coefficient (d33) by over 100%. By optimizing the composition and fabrication conditions, 10% by mass loading barium titanate nanocomposites are able to yield d33 values of ∼80 pC/N compared to <5 pC/N when parameters are not optimized. With a more complete understanding of how to enhance the performance of (0-3) piezoelectric polymer nanocomposites, these materials should find use in a wide range of applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call