Abstract

We prove that interfacial asperity sharpness allows for tuning superlattice in-plane thermal conductivity below or above the limit of high roughness derived from the Lucas-Ziman (LZ) model. Whereas LZ’s model predicts molecular dynamic (MD) results of Lennard-Jones superlattices for small asperities, it has to be modified with a roughness- and sharpness-dependent layer thickness to remain relevant at higher roughness. For the case of sharpest asperities, the modified LZ model still fails, and ray-tracing computations matching MD data reveal a phonon-trap effect in the asperity valleys. This behavior scales with the Knudsen number and should appear at the micron scale in large mean-free-path crystals, such as silicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.