Abstract

We experimentally demonstrated an all-optical tunable sub-kHz single-mode fiber laser based on an ultrahigh-quality (Q)-factor hybrid microbottle resonator. The wavelength tunability is a very important function for fiber lasers, and the all-optical tuning method has rarely been proposed. Here, we use the iron-oxide-nanoparticle-coated silica microbottle resonator with a Q factor of 1.8×108 as the feedback element of the fiber ring laser and suppress the higher-order modes of the microresonator to achieve single-mode lasing with a linewidth of ∼500 Hz and a signal-to-noise ratio of 49dB. Iron oxide nanoparticles are coated on the tapered area of the microbottle resonator and the control light is fed through the axial direction of the microbottle. The lasing wavelength of the fiber laser can be all-optically and linearly tuned with a range of 2.7nm due to the strong photothermal effect of iron oxide nanoparticles. With such an excellent tunability and a narrow linewidth, this single-mode fiber laser has great potential in applications, such as optical spectroscopy, sensing, and signal processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call