Abstract

Reversible, nonvolatile, and pronounced refractive index modulation is an unprecedented combination of properties enabled by chalcogenide phase-change materials (PCMs). This combination of properties makes PCMs a fast-growing platform for active, low-energy nanophotonics, including tunability to otherwise passive thin-film optical coatings. Here, we integrate the PCM Sb2Se3 into a novel four-layer thin-film optical coating that exploits photonic Fano resonances to achieve tunable structural colors in both reflection and transmission. We show, contrary to traditional coatings, that Fano-resonant optical coatings (FROCs) allow for achieving transmissive and reflective structures with narrowband peaks at the same resonant wavelength. Moreover, we demonstrate asymmetric optical response in reflection, where Fano resonance and narrow-band filtering are observed depending upon the light incidence side. Finally, we use a multi-objective inverse design via machine learning (ML) to provide a wide range of solution sets with optimized structures while providing information on the performance limitations of the PCM-based FROCs. Adding tunability to the newly introduced Fano-resonant optical coatings opens various applications in spectral and beam splitting, and simultaneous reflective and transmissive displays, diffractive objects, and holograms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.