Abstract

The nitrogenated porous two-dimensional (2D) material C2N has been successfully synthesized using a simple wet-chemical reaction, which provides a high-performance way to produce such 2D materials with novel electronic and optical properties. In this work, density functional theory (DFT) calculations were performed to investigate the structural, electronic, and optical properties of the layered C2N/MoS2 van der Waals (vdW) heterojunction. The C2N/MoS2 heterojunction was found to have a direct band gap of 1.30 eV and to present the typical type-II heterojunction feature, facilitating the effective separation of photogenerated electrons and holes. The calculated band alignment and enhanced optical absorption suggest that the C2N/MoS2 heterojunction should exhibit good light-harvesting properties. The vertical strain can effectively tune the electronic properties and optical absorption of the C2N/MoS2 heterojunction by changing the interaction between the pz orbital of C2N and the dz2 orbital of MoS2. The mo...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call