Abstract

A graphene-based metamaterial with tunable electromagnetically induced transparency is numerically studied in this paper. The proposed structure consists of a graphene layer composed of H shape between two cut wires, by breaking symmetry can control EIT-like effects and by increasing the asymmetry in the structure has strong coupling between elements. It is important that the peak frequency of transmission window can be dynamically controlled over a broad frequency range by varying the chemical potential of graphene layer. The results show that high refractive index sensitivity and figure of merit can be achieved in asymmetrical structures which is good for sensing applications. We calculated the group delay and the results show we can control the group velocity by varying the S parameter in asymmetrical structure. The characteristics of our system indicate important potential applications in integrated optical circuits such as optical storage, ultrafast plasmonic switches, high performance filters, and slow-light devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.