Abstract
Magnetic skyrmions are appealing for applications in emerging topological spintronic devices. However, when magnetic skyrmions in a nanowire are driven by an in-plane current, a transverse Magnus force deflects their trajectories from the current direction, which tends to push the skyrmion toward the edge. If the current density is exceedingly large, the skyrmion will be annihilated around the edge, leading to a greatly reduced propagation distance and a maximum speed of the skyrmion, which is detrimental to skyrmion-based spintronic applications. Here, we prepare a magnetic multilayer Ta/[Pt/Co]3/Ru/[Co/Pt]3 and tailor the interlayer exchange coupling strength by varying the thickness of the Ru layer. Based on the magneto-optic Kerr effect microscope, we find that the skyrmion–edge interaction is tunable by the interlayer exchange coupling strength, namely, the strength of the repulsive potential from the film edge is tailored by the interlayer exchange coupling strength. Our results unveil the significant role of the interlayer exchange coupling in skyrmion dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.