Abstract

Engineered core-shell cylinders are good candidates for applications in invisibility and cloaking.In particular, hyperbolic nanotubes demonstrate tunable ultra-low scattering cross section in the visible spectral range. In this work we investigate the limits of validity of the condition for invisibility, which was shown to rely on reaching an epsilon near zero in one of the components of the effective permittivity tensor of the anisotropic metamaterial cavity. For incident light polarized perpendicularly to the scatterer axis, critical deviations are found in low-birefringent arrangements and also with high-index cores. We demonstrate that the ability of anisotropic metallodielectric nanocavities to dramatically reduce the scattered light is associated with a multiple Fano-resonance phenomenon. We extensively explore such resonant effect to identify tunable windows of invisibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.