Abstract

The difference in the static electric dipole polarizabilities of the and Rydberg levels in helium has been eliminated by dressing the atom with a microwave field near resonant with the single-photon transition. For an amplitude dressing field, detuned by from the zero-field transition frequency, the dc Stark shift of the two-photon transition between these states remained within for electric fields up to . This transition was probed by single-color two-photon microwave spectroscopy, and by two-color two-photon spectroscopy with one strong additional dressing field and a weak probe field. For all measurements, the transition frequencies and Stark shifts were compared, and found to be in excellent quantitative agreement with the results of Floquet calculations of the energy-level structure of the Rydberg states in the presence of the dressing fields and applied dc electric fields. The two-color microwave dressing scheme demonstrated, with one field applied to null the differential polarizability of the Rydberg–Rydberg transition, and the second exploited to allow the two-photon transition to be employed to achieve tunable absorption of single-photons from a weak probe field, will facilitate improved coherence times and tunable single-photon absorption in hybrid cavity QED experiments with Rydberg atoms and superconducting microwave circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call