Abstract
We present the controlled synthesis of bimetallic Pt(x)Fe(1-x) nanoparticles with tunable physical properties and a study of their catalytic activity towards the oxygen reduction reaction (ORR). Composition-induced variations in alloying extent and Pt d-band vacancies in Pt-Fe/C catalysts are systematically investigated. Density functional theoretical calculations are performed in order to realize the electronic effect caused by alloying Pt with Fe. The DFT computational observations revealed that iron donates electrons to platinum, when the Fe 3d and Pt 5d orbitals undergo hybridization. The Pt(x)Fe(1-x) catalysts with various Pt-to-Fe atomic ratios are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV), and X-ray absorption spectroscopy (XAS). TEM images indicate that the dispersion of the metal nanoparticles is uniform and the XAS technique provides significant insight on Pt d-band vacancies and the alloying extent of Pt and Fe in Pt(x)Fe(1-x) nanoparticles. Rotating-disk voltammetry of Pt(x)Fe(1-x) nanoparticle catalysts with various Pt : Fe atomic compositions (3 : 1, 1 : 1, and 1 : 3) revealed that the Pt(1)Fe(1)/C nanocatalyst showed a greater enhancement in ORR activity than platinum. The enhanced catalytic activity toward ORR is attributed to the higher alloying extent of platinum and iron as well as the promising electronic structure offered by the lower unfilled Pt d states in Pt(x)Fe(1-x) nanoparticles when compared to pure Pt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.