Abstract

When an impurity interacts with a bath of phonons it forms a polaron. For increasing interaction strengths the mass of the polaron increases and it can become self-trapped. For impurity atoms inside an atomic Bose-Einstein condensate (BEC) the nature of this transition is not understood. While Feynman's variational approach to the Fröhlich model predicts a sharp transition for light impurities, renormalization group studies always predict an extended intermediate-coupling region characterized by large phonon correlations. To investigate this intricate regime and to test polaron physics beyond the validity of the Fröhlich model we suggest a versatile experimental setup that allows us to tune both the mass of the impurity and its interactions with the BEC. The impurity is realized as a dark-state polariton (DSP) inside a quasi-two-dimensional BEC. We show that its interactions with the Bogoliubov phonons lead to photonic polarons, described by the Bogoliubov-Fröhlich Hamiltonian, and make theoretical predictions using an extension of a recently introduced renormalization group approach to Fröhlich polarons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.