Abstract

Van der Waals (vdW) p-n heterojunctions consisting of various 2D layer compounds are fascinating new artificial materials that can possess novel physics and functionalities enabling the next-generation of electronics and optoelectronics devices. Here, it is reported that the WSe2/WS2 p-n heterojunctions perform novel electrical transport properties such as distinct rectifying, ambipolar, and hysteresis characteristics. Intriguingly, the novel tunable polarity transition along a route of n-"anti-bipolar"-p-ambipolar is observed in the WSe2/WS2 heterojunctions owing to the successive work of conducting channels of junctions, p-WSe2 and n-WS2 on the electrical transport of the whole systems. The type-II band alignment obtained from first principle calculations and built-in potential in this vdW heterojunction can also facilitate the efficient electron-hole separation, thus enabling the significant photovoltaic effect and a much enhanced self-driven photoswitching response in this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.