Abstract

Our growing interest in the design of pnictogen-based strategies for anion transport has prompted an investigation into the properties of three simple triarylcatecholatostiboranes (1-3) of the general formula (o-C6Cl4O2)SbAr3 with Ar = Ph (1), o-tolyl (2), and o-xylyl (3) for the complexation and transport of hydroxide across phospholipid bilayers. A modified hydroxypyrene-1,3,6-trisulfonic acid (HPTS) assay carried out in artificial liposomes shows that 1 and 2 are potent hydroxide transporters while 3 is inactive. These results indicate that the steric hindrance imposed by the three o-xylyl groups prevents access by the hydroxide anion to the antimony center. Supporting this interpretation, 1 and 2 quickly react with TBAOH·30 H2O ([TBA]+ = [nBu4N]+) to form the corresponding hydroxoantimonate salts [nBu4N][1-OH] and [nBu4N][2-OH], whereas 3 resists hydroxide coordination and remains unperturbed. Moreover, the hydroxide transport activities of 1 and 2 are correlated to the +V oxidation state of the antimony atom as the parent trivalent stibines show no hydroxide transport activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call