Abstract

We study the application of plasmonic lattice modes of arrays of closely packed large metallic nanodisks for chemical and biological sensors with ultrahigh sensitivity and refractive index dynamic range. Our results show that by changing the refractive index of the environment the narrow spectral features associated with these collective modes can be shifted by about 250 nm, going from visible (∼650 nm) to infrared (∼900 nm) range without any mode degradation. We attribute this shift to the refractive-index enhancement of the superstrate collective modes of these arrays. This index enhancement allows the arrays to preserve their mode integrity within this range. We show that, because of this feature and the ultra-long range fields of these modes, such structures can offer a unique platform for biosensors based on dielectric-coated metallic nanoparticle arrays. In such structures, the dielectric layers are used to tune the collective modes of the arrays, protect them against environmental degradation, and to prepare bio-functionalized surfaces for certain biological targets. We demonstrate that such a platform allows us to set the operation wavelength of these sensors within the visible-infrared spectral range with sensitivity more than 520 nm/refractive index unit and a figure of merit of about 17.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.