Abstract

Surface-enhanced Raman scattering (SERS) is an emerging analytical method used in biological and non-biological structure characterization. Since the nanostructure plasmonic properties is a significant factor for SERS performance, nanostructure fabrication with tunable plasmonic properties are crucial in SERS studies. In this study, a novel method for fabrication of tunable plasmonic silver nanodomes (AgNDs) is presented. The convective-assembly method is preferred for the deposition of latex particles uniformly on a regular glass slide and used as a template for polydimethylsiloxane (PDMS) to prepare nanovoids on a PDMS surface. The obtained nanovoids on the PDMS are used as a mold for AgNDs fabrication. The nanovoids are filled with Ag deposition by the electrochemical method to obtain metallic AgNDs. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) are used for characterization of the structural properties of all fabricated AgNDs. The optical properties of AgNDs are characterized with the evaluation of SERS activity of 4-aminothiphonel and rhodamine 6G. In addition to experimental characterizations, the finite difference time domain (FDTD) method is used for the theoretical plasmonic properties calculation of the AgNDs. The experimental and theoretical results show that the SERS performance of AgNDs is strongly dependent on the heights and diameters of the AgNDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call