Abstract

We propose in this paper a tunable plasmonic filter based on graphene split-ring (GSR) resonator. It is found the resonances could be classified into two categories, i.e., even-parity and odd-parity mode according to the symmetry of field profile in GSR. The coupling between graphene nanoribbon and GSR is GSR-orientation sensitive, and the odd-parity mode presents a greater sensitivity due to its asymmetric field profile. The transmission spectrum of the proposed filter could be efficiently modified by tuning the shape, orientation, and Fermi level of GSR. The proposed structure can be applied in the tunable ultra-compact graphene plasmonic devices for future nanoplasmonic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.