Abstract

Integrating conventional superconductors with common III-V semiconductors provides a versatile platform to implement tunable Josephson junctions (JJs) and their applications. We propose that with gate-controlled time-dependent spin-orbit coupling, it is possible to strongly modify the current-phase relations and Josephson energy and provide a mechanism to drive the JJ dynamics, even in the absence of any bias current. We show that the transition between stable phases is realized with a simple linear change in the strength of the spin-orbit coupling, while the transition rate can exceed the gate-induced electric field GHz changes by an order of magnitude. The resulting interplay between the constant effective magnetic field and changing spin-orbit coupling has direct implications for superconducting spintronics, controlling Majorana bound states, and emerging qubits. We argue that topological superconductivity, sought for fault-tolerant quantum computing, offers simpler applications in superconducting electronics and spintronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.