Abstract

We have investigated the physical and optical properties of the left-handed chiral dopant ZLI-811 mixed in a nematic liquid crystal (LC) host BL006. The solubility of ZLI-811 in BL006 at room temperature is ~24 wt%, but can be enhanced by increasing the temperature. Consequently, the photonic band gap of the cholesteric liquid crystal (CLC) mixed with more than 24 wt% chiral dopant ZLI-811 is blue shifted as the temperature increases. Based on this property, we demonstrate its applications in thermally tunable band-pass filters and dye-doped CLC lasers. In addition, we also demonstrated a spatially tunable laser emission by generating a one-dimensional temperature gradient along the dye-doped cholesteric liquid crystal (CLC) cell. The lasing wavelength is widely tunable from 577 nm to 670 nm. The lowest excitation energy and maximum lasing efficiency occur at λ~605 nm which corresponds to the peak fluorescence emission of the dye.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call