Abstract

With the combination of excited-state intramolecular proton transfer and trans-cis isomerization as microscopic molecular motions under light stimulus, multiple photodeformable processes are achieved in anil-poly(ethylene terephthalate) systems, including simple bending, dancing butterflies, and switches. The doping films can realize light-driven contraction as large as 70% and bending angle of about 141°, upon a simple stretching process. The internal mechanism is confirmed by transient absorption spectra, and the relationship between molecular structure and photocontrolled motion is investigated by theoretical calculations and crystal analysis. This work provides a convenient approach by utilizing anils to fabricate reversible actuations with desirable geometries, greatly contributing to the applications and manufacturing of soft robots and related research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.