Abstract

As an important organic photofunctional material, spirooxazine (SO) usually does not exhibit photochromism in the solid state since the intermolecular π-π stacking impedes photoisomerization. Developing photochromic SO in the solid state is crucial for practical applications but is still full of challenges. Here, a series of spirooxazine derivatives (SO1-SO4) with bulky aromatic substituents at the 4- and 7-positions of the skeleton, which provide them with a large volume with which to undergo solid-state photochromism under mild conditions, is designed and synthesized. All the compounds SO1-SO4 exhibit tunable solid photochromism without ground colors, excellent fatigue resistance, and high thermal stability. Notably, it takes only 15s for SO4 to reach the saturation of absorption intensity, thought to represent the fastest solid-state photoresponse of spirooxazines. X-ray crystal structures of the intermediate compound SO0 and the products SO1-SO2 as well as computational studies suggest that the bulky aromatic groups can lead to a hypochromic effect, allowing for the photochromism of SO in the solid state. The ideal photochromic properties of these spirooxazines open a new avenue for their applications in UV printing, quick response code, and related fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call