Abstract

The photocatalytic properties of Janus transition metal dichalcogenide (TMD) nanotubes are closely correlated with the electrostatic potential difference between their inner and outer surfaces (ΔΦ). However, due to some distraction from the tubular structures, it remains a great challenge to calculate their ΔΦ directly. Here, we creatively work out the ΔΦ of Janus MoSSe armchair single-walled nanotubes (A-SWNTs) with their corresponding building block models by first-principles calculations. The ΔΦ increases as the diameter reduces. After considering ΔΦ, we find that all of these MoSSe A-SWNTs possess suitable band-edge positions required for water redox reactions and high solar-to-hydrogen (STH) conversion efficiencies. The built-in field induced by the ΔΦ promotes the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) to proceed separately on the inner and outer surfaces. Especially, the photoexcited carriers exhibit adequate driving forces for OER and HER. Besides, constructing a double-walled nanotube can dramatically increase ΔΦ, which also further improves the separation and redox capacity of photoexcited carriers as well as the STH conversion efficiency. Moreover, all of these MoSSe armchair nanotubes have outstanding optical absorption in the visible light range. Our studies provide an effective strategy to improve the photocatalytic water-splitting performance of Janus TMD nanotubes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call