Abstract

Two-dimensional materials with a unique layered structure have attracted intense attention all around the world due to their extraordinary physical properties. Most importantly, the internal Coulomb coupling can be regulated, and thus electronic transition can be realized by manipulating the interlayer interaction effectively through adding external fields. At present, the properties of two-dimensional materials can be tuned through a variety of methods, such as adding pressure, strain, and electromagnetic fields. For optoelectronic applications, the lifetime of the photogenerated carriers is one of the most crucial parameters for the materials. Here, we demonstrate effective modulation of the optical band gap structure and photocarrier dynamics in CuS nanoflakes by applying hydrostatic pressure via a diamond anvil cell. The peak differential reflection signal shows a linear blueshift with the pressure, suggesting effective tuning of interlayer interaction inside CuS by pressure engineering. The results of transient absorption show that the photocarrier lifetime decreases significantly with pressure, suggesting that the dissociation process of the photogenerated carriers accelerates. It could be contributed to the phase transition or the decrease of the phonon vibration frequency caused by the pressure. Further, Raman spectra reveal the change of Cu-S and S-S bonds after adding pressure, indicating the possible occurrence of structural phase transition. Interestingly, all of the variation modes are reversible after releasing pressure. This work has provided an excellent sight to show the regulation of pressure on the photoelectric properties of CuS, exploring CuS to wider applications that can lead toward the realization of future excitonic and photoelectric devices modulated by high pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call