Abstract

A transmitted-type guided-mode resonance (GMR) sensor is presented for using an electro-optic heterodyne interferometer to tune phase detection sensitivity. The GMR grating waveguide structure is fabricated using a low-cost nanoimprinting SiO(2) sol-gel process and sputtering TiO(2) film. The phase properties of the GMR sensor are numerically investigated to verify its phase detection capability in a heterodyne interferometer. The phase curves for both transmitted- and reflected-type GMR sensors are experimentally obtained and compared. We conclude that the transmitted-type GMR sensor is more feasible for tuning phase detection sensitivity by rotating the analyzer in the electro-optic heterodyne interferometer. In our experiment, we achieved the GMR sensor phase detection sensitivity as high as 1.8 × 10(-7) RIU.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.