Abstract

In this article, we have theoretically demonstrated that the perfect absorption at infrared frequencies can be achieved and controlled by using a graphene-hexagonal Boron Nitride (hBN) hyper crystal. hBN, the latest natural hyperbolic material, can be regarded as an excellent substrate to form a hyper crystal with graphene. Although the perfect absorption by a half-space of hBN crystal can be achieved due to its high optical anisotropy, but the perfect absorption can only appear at certain fixed wavenumber and incidence angle. By introducing a graphene-hBN hyper crystal, we can get perfect absorption at different wavenumbers and incidence angles by varying the Fermi energy level of graphene sheets via electrostatic biasing. We show that the perfect absorption can be realized at different Fermi energies for TM waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call