Abstract

The use of bioreactors for bone tissue engineering has been widely investigated. While the benefits of shear stress on osteogenic differentiation are well known, the underlying effects of dynamic culture on subpopulations within a bioreactor are less evident. In this work, we explore the influence of applied flow in the tubular perfusion system (TPS) bioreactor on the osteogenic differentiation of human mesenchymal progenitor cells (hMPCs), specifically analyzing the effects of axial position along the growth chamber. TPS bioreactor experiments conducted with unidirectional flow demonstrated enhanced expression of osteogenic markers in cells cultured downstream from the inlet flow. We utilized computational fluid dynamic modeling to confirm uniform shear stress distribution on the surface of the scaffolds and along the length of the growth chamber. The concept of paracrine signaling between cell populations was validated with the use of alternating flow, which diminished the differences in osteogenic differentiation between cells cultured at the inlet and outlet of the growth chamber. After the addition of controlled release of bone morphogenic protein-2 (BMP-2) into the system, osteogenic differentiation among subpopulations along the growth chamber was augmented, yet remained homogenous. These results allow for greater understanding of axial bioreactor cultures, their microenvironment, and how well-established parameters of osteogenic differentiation affect bone tissue development. With this work, we have demonstrated the capability of tuning osteogenic differentiation of hMPCs through the application of fluid flow and the addition of exogenous growth factors. Such precise control allows for the culture of distinct subpopulation within one dynamic system for the use of complex engineered tissue constructs. Biotechnol. Bioeng. 2016;113: 1805-1813. © 2016 Wiley Periodicals, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.