Abstract
Lasers and light emitters do not typically radiate fields with orbital angular momentum (OAM). Here we show that a suitable scheme of spatiotemporal modulation of a microring cavity laser can impart a synthetic angular momentum, resulting in beams with well-defined OAM. The phenomenon relies on a traveling wave modulation of the refractive index of the microring, which breaks the degeneracy of oppositely oriented whispering gallery modes. In parallel, a static structural grating on the periphery of the microring enables efficient vertical radiation. The proposed structure is inherently tunable and can also emit fields with zero net OAM while retaining toroidal energy distributions similar to the effect of an axicon lens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.