Abstract

We show here that the response of ion-selective membrane electrodes (ISEs) based on traditional PVC membranes can be directly translated to a colorimetric readout by a closed bipolar electrode (BPE) arrangement. Because the resulting optical response is based on the turnover of the redox probe, ferroin, dissolved in a thin layer compartment, it directly indicates the potential change at the ISE in combination with a reference electrode. This class of probes measures ion activity, analogous to their ISE counterparts. Unlike other ion optodes, the response is also fully tunable over a wide concentration range by the application of an external potential and occurs in a compartment that is physically separate from the sample. To allow for the electrical charge to pass across the ion-selective electrodes, the membranes are doped with inert lipophilic electrolyte, ETH 500, but otherwise have an established composition. The observed response behavior correlates well with theory. A wide range of ion-selective membranes are confirmed to work with this readout principle, demonstrating the detection of potassium, sodium, calcium, and carbonate ions. The corresponding sigmodal calibration curve is used for quantitative analysis in a range of samples including commercial beverages and river and lake samples. The data are successfully correlated with atomic emission spectroscopy and direct potentiometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.