Abstract

We present the design and fabrication of a tunable optical buffer device based on III-V semiconductor platform for telecommunication applications. The device comprises two indium phosphide suspended parallel waveguides with cross sectional dimension of 200 nm by 300 nm, separated by an air gap. The gap between the waveguides was designed to be adjustable by electrostatic force. Our simulation estimated that only 3 V is required to increase the separation distance from 50 nm to 500 nm; this translates to a change in the propagation delay by a factor of 2. The first generation of the suspended waveguide structure for optical buffering was fabricated. The sample was grown on an InP substrate by molecular beam epitaxy. The waveguide pattern is written onto a 300 nm thick InP device layer by electron beam lithography and plasma etching. Electrodes were incorporated into the structure to apply voltages for MEMS actuation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.