Abstract
In this paper, tunable optical bistability that denotes the relationship between input intensity and output intensity is numerically investigated in the microwave frequency region based on the one-dimensional (1D) sandwich photonic structure consisting of a Kerr-type nonlinear material slab and two magnetized cold plasma layers. Results show that, in the case of TM-polarized electromagnetic wave, width and switching thresholds of the bistability loops are dependent on the working frequency, initial incidence angle, layer thickness, plasma density, and external magnetic field, which should be judiciously selected to obtain a required bistability behavior. Compared to the case of switch-down threshold, the switch-up threshold in the bistability loop is more sensitive to the changes of parameters. Through this study, the suggested 1D sandwich photonic structure is beneficial to the all-optical signal processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.