Abstract
Tunable, one-dimensional (1D) nanofiller assembly using oscillating magnetic fields in the low frequency range (<5 Hz) is studied as a scalable and energy-efficient method to structure nanofillers within viscous matrices to deliver anisotropic, multi-functional polymer nanocomposites (PNCs). In this work 1D assembly tailoring was first experimentally studied and demonstrated using the model system of superparamagnetic iron oxide nanoparticles (SPIONs, 15 nm, 0.02–0.08 vol%) in DI water using varying magnetic fields (0–5 Hz frequency, 10–100 G magnetic flux density, and square and sinusoidal waveforms). In addition to lateral assembly of nanofillers, when the field oscillation is turned on, transverse assembly can be introduced as the magnetic moments of the particles respond to the changing fields by Brownian rotation. The degree of transverse assembly, in balance with lateral assembly and the resulting nanofiller patterns, was observed to be determined by the magnetic field parameters, magnetic responsiveness of the nanofillers, and the matrix viscosity. Based on this assembly study, PNCs consisting of ferrimagnetic iron oxide nanofillers in a thermoset polymer, with two different linear nanoparticle patterning, were successfully fabricated using small magnetic fields (<100 G) even in a viscous matrix (70 cP) with a short assembly time of 30 min. This work can contribute to scalable manufacturing and thus bulk application of multi-functional PNCs enabled by more precise nanofiller and interface structuring.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.