Abstract

We have theoretically investigated the tunability of the omnidirectional bandgap (OBG) of a one-dimensional photonic crystal consisting of alternating Dirac semimetals (DSs) and SiO2 dielectrics by adjusting the structural Fermi level. This photonic bandgap (PBG) is strongly dependent on the Fermi level and thickness ratio of the DSs and SiO2 layers. The effects of different parameters such as Fermi level, incident angle, and lattice constant on PBG are analyzed in detail. It is found that the first gap does not change with the change in lattice constant, but it is sensitive to the Fermi level; the width of the omnidirectional PBG increases with the structural Fermi level. The second gap is also sensitive to the Fermi level, the upper and lower frequency limits of this PBG shift to higher frequency, and the width becomes narrower as the Fermi level is increasing, where only one OBG exists in the range of 3.6–4.3 THz for transverse electric polarization. However, as the angle of incidence increases, the photonic bandgap can close for transverse magnetic polarization. All these properties can be applied to tunable optical filters or optical switches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call