Abstract
Randomly arranged inclined irregular nanostructure-covered blue-tailed forest hawk dragonfly wings are highly transparent for wide viewing angles. Inspired by the dragonfly wings, monolayer silica colloids are self-assembled on shape memory polymer-coated substrates and utilized as plasma etching masks to pattern disorderly arranged inclined irregular conical structures. The structures build gradual refractive index transitions at various angles of incidences, resulting in omnidirectional antireflection performance over the whole visible wavelength region. In comparison with a bare substrate, the optimized structure-covered substrate presents 10% higher optical transmission at 0° and even 41% higher optical transmission at an angle of incidence of 75°. Importantly, by manipulating the structural configuration of the shape memory polymer-based structures, the corresponding antireflection characteristics can be instantaneously and reversibly eliminated and recovered after drying out of common household liquids or applying contact pressures in ambient environments. The tunable omnidirectional antireflection coatings are prospective candidates for realizing optical modulation, which exhibits an enormous application value in smart windows, intelligent display screens, optical components, and novel optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.