Abstract

We report cross-link-tunable, nonlinear optical pattern formation of transmitted light in a photopolymer undergoing free-radical polymerization. Photopolymerization induces microscale filamentation of a uniform, broad transmitted beam, which corresponds to a concurrent spatial evolution in cross-linked morphology in the photopolymer. Because the photopolymerization is permanent, the ensemble of filaments imprint a microstructure comprising a cross-link gradient pattern. Tuning the system’s capability to cross-link and branch changes the magnitude of the refractive index change (Δn), which both induces nonlinear conditions and also changes the strength of the optical nonlinearity. Only a monomer with sufficient functionality shows stable optical pattern formation, and its nonlinear regime exists for a specific range of exposure intensities. A monomer of lower functionality can be pushed into the nonlinear regime by formulating it with higher functional monomers, whereby Δn is increased to provide a stronge...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.