Abstract
In this paper, we study the nonlinear optical bistability (OB) in a symmetrical multilayer structure. This multilayer structure is constructed by embedding a nonlinear three-dimensional Dirac semimetal (3D DSM) into a Fabry–Perot cavity composed of one-dimensional photonic crystals. The OB phenomenon stems from the third order nonlinear conductivity of 3D DSM. The local field of resonance mode could enhance the nonlinearity and reduce the thresholds of OB. This structure achieves the tunability of OB due to the fact that the transmittance could be modulated by the Fermi energy. It is found that the OB threshold and threshold width could be remarkably reduced by increasing the Fermi energy of the 3D DSM. Besides, we also found that the OB curve depends heavily on the angle of incidence of the incident light, the structural parameters of the Fabry–Perot cavity, and the position of the 3D DSM inside the cavity. After parameter optimization, we obtained OB with a threshold of 106 V/m. We believe this simple multilayer structure could provide a reference idea for realizing low-threshold and tunable all-optical switching devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.