Abstract

Versatile coupling theories have been developed for rationalizing unusual aggregation phenomena of multipolar chromophores. Here, diverse excitonic couplings of a quadrupolar squaraine dye protonated by trifluoroacetic acid could be achieved and tuned unprecedentedly in different solvation media. Subtle changes of the solvent and ion pair influenced the aggregation of the donor-acceptor-donor (D-A-D)-type SQC6 and led to significant variations in optical properties. In contrast to conventional H/J aggregates, strong spectroscopic evidence of nonfluorescent and red-shifted hJ aggregation was obtained. Assumptions of the excitonic interplay with variable strength stabilized by the synergic contributions of π-π stacking and electronic interaction were addressed. Comparative excited-state dynamics in the aggregates clarified the distinctive excitonic coupling of adjacent quadrupolar molecules and the nature of the excited state beyond the dimers. Meanwhile, dominant two-photon absorption transitions could be elucidated by a resonance-enhanced mechanism. The present unusual molecular interplay provides a strategy to fine tune the optical properties of multipolar aggregates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.